OSNAP at Past Meetings

Ocean Science Meeting

18-23 February 2024
New Orleans, Louisiana

CC12B-02 The meridional overturning circulation in the North Atlantic: insights from OSNAP
Susan Lozier and Yao Fu

CC12B-09 What can we learn about the AMOC variability from comparing the OSNAP observations to an eddying ocean model?
Xiaobiao Xu, Eric Chassignet

PL13A-05 Oxygen Transport and Variability in the Labrador Sea: First Insights from Oxygen Measurements on the OSNAP Array
Una Miller, Jaime B Palter, Dariia Atamanchuk, Kristen E Fogaren, Jannes Koelling, Isabela Le Bras, Hiroki Nagao, David P Nicholson, Hilary I Palevsky, Ellen Park and Meg F. Yoder

PL14B Physical Transport and Biogeochemical Cycling in the Subpolar North Atlantic II Poster
Jaime B Palter, Ric Williams, Fiammetta Straneo, Hilary I Palevsky, Jannes Koelling

PL13A Physical Transport and Biogeochemical Cycling in the Subpolar North Atlantic I Oral
Jaime B Palter, Fiammetta Straneo, Hilary I Palevsky,  Ric Williams, Jannes Koelling

CC13B-02 Lack of coherence between the z-space MOC at OSNAP and RAPID is wind-driven
Neil Fraser, Stuart A Cunningham and Alan Fox

CC12B-03 Interannual variability of the NAC and recirculations in the eastern boundary of the OSNAP array and its impact on heat fluxes
Kristin Burmeister, Sam C Jones, Stuart A Cunningham, Neil Fraser, Lewis Drysdale and Mark E Inall

CC11B-04 A Simple Conceptual Model for the Self-Sustained Multidecadal AMOC Variability
Xinyue Wei, Rong Zhang

CC12B-05 Water Mass transformation and its relationship to the subpolar overturning
Yao Fu, Susan Lozier, Sudip Majumder and Tillys Petit

OP31H-07The Labrador Sea at 1/60th degree – AMOC and eddies
Pouneh Hoshyar, Clark William Pennelly and Paul Glen Myers

OT51A-09 Evaluation of Ice Measurements along the West Greenland Shelf near Cape Farewell
Daniel J Torres, Robert S Pickart, Jie Huang and Briony Hutton

PL21A-02 Transport and Modification of Overflow Waters in the Subpolar North Atlantic
Emma Worthington, William E Johns, Amy S Bower, Femke de Jong, Johannes Karstensen, Robert S Pickart, Greg Koman, Heather H Furey, Ahmad Fehmi Dilmahamod, Nora Fried, Jie Huang and Astrid Pacini

PL14A-2205 Observation-based estimates of the western boundary heat budget in the subpolar North Atlantic
Yingjie Liu, Damien Desbruyères, Herle Mercier and Guihua Wang

CC13B-09Simulated and Observed AMOC Transport Estimates in the North and South Atlantic
Gokhan Danabasoglu, Frederic S Castruccio, Shenfu Dong, Eleanor Frajka-Williams, Matthias J Lankhorst, Christopher S Meinen, Renellys C Perez and Justin Small

CC14D-1234 Temporal Variability of the North Atlantic Current in the Iceland Basin
Tiago Segabinazzi Dotto, N. Penny Holliday, Darren Rayner, Emma Worthington, Ben I Moat, Kristin Burmeister, Stuart A Cunningham and William E Johns

CC12B-04 North Atlantic Deep Water Observations using Ocean Bottom Pressure from GRACE and GRACE-FO
Jordan Meyer and Don P Chambers

PL14B-2217An alternative metric for estimating the Atlantic Meridional Overturning Circulation reveals net density decrease and mass loss in the Labrador Sea
Greg Koman, Amy S Bower, William E Johns, and Yao Fu

PL21A-03A Global Forced Ocean/Sea-Ice/Land Hindcast Simulation with MOM6 at Eddy Resolving Scales: The Atlantic
Matt Harrison, Tiago Carrilho Bilo, Renellys C Perez, Denis Volkov, Leah Chomiak, Shenfu Dong, and Matthieu Le Henaff


The Royal Society Scientific Meeting

Atlantic overturning: new observations and challenges

December 5-6, 2022
London, UK and Virtual

Meeting Website

Note: All displayed times are in GMT (UTC).


AGU Fall Meeting

December 12-16, 2022
Chicago, IL and Virtual

Meeting Website

Note: All displayed times are in CST (UTC-6).

Tuesday, 13 December

Orals

Title: Monitoring Local Heat Content Changes with Satellite Altimetry and Space Gravimetry to Assess the Variability of the Meridional Heat Transport in the North Atlantic: the 4DATLANTIC-OHC Project
Authors: Robin Fraudeau* et al.
Time: 8:00-9:00 CST 
Location: Online

Title: What Determines the Pathways of Iceland-Scotland Overflow Water in the Eastern North Atlantic?
Authors: Amy S Bower*, Andrée Ramsey, Heather H Furey and Susan Lozier 
Time: 14:45 – 14:54 CST 
Location: McCormick Place – S105d

Title: Seasonality of the Meridional Overturning Circulation in the Subpolar North Atlantic
Authors: Yao Fu*, Susan Lozier and The OSNAP Team 
Time: 14:54 – 15:03 CST 
Location: McCormick Place – S105d

Title: The Contribution of Iceland-Scotland Overflow to the 20th-Century Weakening of the Atlantic Overturning Circulation
Authors: David J Thornalley, Delia Oppo, Wanyi Lu, Ian R Hall, I.N. Nicholas McCave and Lloyd D Keigwin
Time: 16:45 – 16:54 CST 
Location: McCormick Place – S105d

Posters

Abstract Title: Freshening of the Iceland Basin: Clues from the Grand Banks?
Authors: Adele Anderson*, Heather H Furey, Nicholas Foukal and Amy S Bower
Time: 9:00 – 12:30 CST
Location: McCormick Place, Poster Hall, Hall A

Abstract Title: Variability of North Atlantic Water Mass Properties over the past 20 years
Authors: Anne-Sophie Fortin*, Susan Lozier
Time: 9:00 – 12:30 CST
Location: McCormick Place, Poster Hall, Hall A

Abstract Title: Variability of Iceland Scotland Overflow Water through the Bight Fracture Zone: Two-years of Moored Observations
Authors: Heather H Furey*, Amy S Bower, Andrée Ramsey, Thomas Meunier and Adam Houk
Time: 14:45 – 18:15 CST
Location: McCormick Place, Poster Hall, Hall A

Wednesday, 14 December

Orals

Title: The decreasing transport of the Deep Western Boundary Current 
Authors: Greg Koman*, Amy S Bower, Heather H Furey and N. Penny Holliday
Time: 15:00 – 15:10 CST 
Location: McCormick Place, S106a 

Title: Increase in Subpolar North Atlantic SST Variability between 1950–2017 Largely Driven by Atmospheric Processes
Authors: Kimberley Drouin*, Laifang Li, Susan Lozier, Mark A Cane, and Amy C Clement
Time: 15:20 – 15:30 CST 
Location: McCormick Place, S106a 

Title: Compute Importance of Observations for AMOC Variability Prediction with Machine Learning and Explainable AI
Authors: Yannick Woelker*, Willi Rath, Arne Biastoch and Matthias Renz
Time: 15:20 – 15:30 CST 
Location: McCormick Place, S105d 

Posters

Abstract Title: Unsupervised clustering of Lagrangian trajectories in the Labrador Current
Authors: Noémie Planat*, Mathilde Jutras, Carolina O. Dufour
Time: 9:00 – 12:30 CST
Location: McCormick Place, Poster Hall, Hall A

Thursday, 15 December

Orals

Title: A Simple Conceptual Model for the Self-Sustained Multidecadal AMOC Variability
Authors: Xinyue Wei and Rong Zhang
Time: 11:00 – 11:10 CST 
Location: McCormick Place, S504d 

2022 US AMOC Science Team Meeting

April 25, 2022 – April 28, 2022
Woods Hole, MA and Virtual

Meeting Website

Note: All displayed times are in US Eastern Daylight Time (UTC -4).

MONDAY, APRIL 25

Talks

  • 9:10 – Susan Lozier*, The OSNAP Observing Team
    Overturning in the Subpolar North Atlantic: What we have learned to date and what we have yet to learn
  • 16:45 – Femke de Jong*, Isabela Le Bras, Leah Trafford McRaven, Miriam Sterl, Elodie Duyck, and Nora Fried
    Variability in Irminger Sea convection and hydrography

Poster Sessions (9:40-11:00)

  • Nora Fried* and Femke de Jong
    The impact of mesoscale variability on northward volume transport in the Irminger Sea
  • Yao Fu*
    Seasonal cycle of the overturning circulation in the subpolar North Atlantic
  • Greg Koman*
    New Observations of the Deep Western Boundary Current from OSNAP

TUESDAY, APRIL 26

Poster Sessions (9:40-11:00)

  • Elodie Duyck*, Femke de Jong and Renske Gelderloos
    Wind-driven freshwater export at Cape Farewell

OSM 2022 – February 24 to March 4, 2022

Meeting Website
Please note that the times are displayed in (UTC-05:00) Eastern Time (US & Canada) (UTC-04:00 Daylight) 

MONDAY 28 FEBRUARY 2022

AI01 Air-Sea Interaction and Climate Variability in the Atlantic Ocean: Observations, Modeling, and Theories 01 (Room 8) – 9:00 to 10:00 AM EST

  • 9:00 AM EST  Astrid Pacini*, Bob Pickart, Kent Moore
    Wind-forced upwelling in the West Greenland Coastal Current

AI01 Air-Sea Interaction and Climate Variability in the Atlantic Ocean: Observations, Modeling, and Theories 02 (Room 8) – 10:00 to 11:00 AM EST

  • 10:20 AM EST  Félix Margirier*, Susan Lozier, and Laifang Li.
    The influence of extreme events on mixed layer depth dynamics in the North Atlantic
  • 10:25 AM EST  Monica Nelson*, Fiamma Straneo, and Sarah Purkey
    Heat budget for the central Irminger Sea

PL05-Ventilation, circulation and mixing of the deep ocean: Observing and modeling the deep and bottom limb of the meridional overturning circulation 02 (Room 7) – 5:00 to 6:00 PM EST

  • 5:00 PM EST – Yingjie Liu*, Damien G. Desbruyères, Herlé Mercier, Michael A. Spall
    Observation-based estimates of Eulerian-mean boundary downwelling in the western subpolar North Atlantic

TUESDAY 1 MARCH 2022

AI01 Air-Sea Interaction and Climate Variability in the Atlantic Ocean: Observations, Modeling, and Theories 03 (Room 8) – 9:00 to 10:00 AM EST

  • 9:05 AM EST – Feili Li*, Susan Lozier, Penny Holliday,  William Johns, Isabela Le Bras, Ben Moat, Stuart Cunningham, and Femke de Jong.
    Observation-based estimates of heat and freshwater exchanges from the subtropical North Atlantic to the Arctic

AI01 Air-Sea Interaction and Climate Variability in the Atlantic Ocean: Observations, Modeling, and Theories 04 (Room 8) – 10:00 to 11:00 AM EST

  • 10:15 AM – Yao Fu*, Susan Lozier, and OSNAP Team.
    Seasonal cycle of the overturning circulation in the subpolar North Atlantic

PL05 Ventilation, circulation and mixing of the deep ocean: Observing and modeling the deep and bottom limbs of the meridional overturning circulation 04 (Room 7) – 5:00 to 6:00 PM EST

  • 5:15 PM – Isabela Le Bras*, Jörn Callies, Fiamma Straneo, Tiago Carrilho Bilo, James Holte, and Helen Johnson
    Slantwise Convection in the Irminger Sea

WEDNESDAY 2 MARCH 2022

AI01 Air-Sea Interaction and Climate Variability in the Atlantic Ocean: Observations, Modeling, and Theories 05 (Room 8) – 9:00 to 10:00 AM EST

  • 9:00 AM – Kimberley Drouin*, Susan Lozier, Amy Clement, Mark Cane, Laifang Li.
    Identifying and understanding changes in the AMV pattern

PL05 Ventilation, circulation and mixing of the deep ocean: Observing and modeling the deep and bottom limbs of the meridional overturning circulation 05 (Room 7) – 3:30 to 4:30 PM EST

  • 3:30 PM – Yana Bebieva* and Susan Lozier.
    Fresh water and atmospheric cooling control on density-compensated overturning in the Labrador Sea
  • 3:40 PM – Susan Lozier*, Amy Bower, Heather Furey, Kimberley Drouin, Xiaobiao Xu, and Sijia Zou.
    Overflow Water Pathways in the North Atlantic: New Observations from the OSNAP Program

PL05 Ventilation, circulation and mixing of the deep ocean: Observing and modeling the deep and bottom limbs of the meridional overturning circulation 06 (Room 7) – 5:00 to 6:00 PM EST

  • 5:20 PM – Sijia Zou*, Amy Bower, and Susan Lozier.
    Deep Ocean Circulation in the Subpolar North Atlantic

PLP02 Physical Oceanography: Mesoscale and Larger Posters (Room 7) – 7:00 PM EST

  • 7:02 PM – Sudip Majumder*, Susan Lozier, and Feili Li.
    Toward optimizing the OSNAP array

THURSDAY 3 MARCH 2022

HLP04 High Latitude Environments Posters (HL04+HL11+HL13+HL15+HL16) (Room 05) – 7:00 PM EST

  • HL13 Coastal Circulation and Biogeochemical Processes in High Latitudes in a changing climate
    • 7:02 PM – Nick Foukal* and Bob Pickart, HL-High Latitude Environments
      Moored observations of the West Greenland coastal current along the southwest Greenland shelf

FRIDAY 4 MARCH 2022

PL05 Ventilation, circulation and mixing of the deep ocean: Observing and modeling the deep and bottom limbs of the meridional overturning circulation 09 – 3:30 PM to 4:30 PM

  • 3:35 PM – Tiago Carrilho Bilo*, Fiammetta Straneo, James Holte, Isabela Le Bras
    On the Recent Freshening of the Irminger Sea (2015-2020)

HL15 Air-Ice-Ocean Interactions in a Changing Arctic 02 (Room 05) – 5:00 to 6:00 PM EST

  • 5:20 PM – Jie Huang*, Bob Pickart, Zhuomin Chen, Rui Xin Huang
    Role of air-sea heat flux on the transformation of Atlantic Water along the rim current system in the Nordic Seas

EGU 2021

Meeting Website
19-30 April, 2021

Monday 26 April 2021

  • EGU21-12036: Freshwater export from the south-east Greenland shelf into the Irminger Sea and relation to wind events
    • Elodie Duyck and Femke De Jong.
    • 09:49 CEST.
  • EGU21-9128: Characteristics and variability of ocean ventilation in the high-latitude North Atlantic in an eddy-permitting ocean model
    • Helen L. Johnson, Graeme MacGilchrist, David P. Marshall, Camille Lique, Matthew Thomas, Laura Jackson, and Richard Wood
    • 11:00–11:10 Talk
    • 11:46-12:30 CEST Text Chat

Friday 30 April 2021

  • EGU21-940: Shifting ocean circulation warms the Subpolar North Atlantic since 2016
    • Damien Desbruyères et al
    • 13:30 CEST
  • EGU21-8089:A climatology of the North Atlantic subpolar gyre boundary
    • Sam Jones, Stuart Cunningham, Neil Fraser, and Mark Inall
    • 13:42–13:44 CEST
  • EGU21-3500: Role of the density structure and air-sea fluxes on subpolar transformation.
    • Tillys Petit, M. Susan Lozier, Simon A. Josey, and Stuart A. Cunningham
    • 13:56–13:58 CEST
  • EGU21-4769: 28-year volume transport decrease in the Irminger Sea: Results from mooring and reanalysis data
    • Nora Fried and M. Femke de Jong
    • 13:58–14:00 CEST
  • EGU21-13295: Cyclonic eddies in the West Greenland boundary current system.
    • Astrid Pacini, Robert S. Pickart, Isabela A. Le Bras, Fiammetta Straneo, N. Penny Holliday, and Michael A. Spall.
    • 15:58-16:00 CEST
  • EGU21-2824: How much Arctic fresh water participates in the subpolar overturning circulation?
    • Isabela Le Bras et al.
    • 15:46 CEST, 2 minute presentation
    • 16:06-17:00 CEST breakout text chat 

EGU 2019

April 7-12, 2019 in Vienna, Austria
Meeting Website

Talks

Sheldon Bacon, Cristian Florindo-Lopez, Penny Holliday, Yevgeny Aksenov, and Eugene Colbourne, Arctic Ocean and Hudson Bay Freshwater Exports: New Estimates from 7 Decades of Hydrographic Surveys in the Labrador Sea (EGU2019-15367)

Amy Bower, Atrid Pacini, Isabela le Bras, Heather Furey, Susan Lozier, Robert Pickart, Andree Ramsey, Fiamma Straneo, and Sijia ZouAbundant Cyclonic Eddies in the Deep Boundary Current Around Southern Greenland (EGU2019-18278

Femke de Jong, Amy Bower, Henrik Soiland, and Heather Furey, The circulation of dense waters in the Iceland Sea (EGU2019-2719)

Tiago Carrilho Bilo and William Johns, Interior pathways of Labrador Sea Water in the North Atlantic from the Argo perspective (EGU2019-2304)

Kimberley L. Drouin and M. Susan Lozier, Surface pathways of the South Atlantic: Revisiting the “cold” and “warm” water routes using observational data (EGU2019-2213)

N. Penny Holliday, Manfred Bersch, Bee Berx, Léon Chafik, Hjálmar Hátún, Bill Johns, Simon Josey, Karin Margretha Larsen, Marilena Oltmanns, Gilles Reverdin, Tom Rossby, Virginie Thierry, and Hedinn Valdimarsson, Ocean Circulation Changes Cause the Largest Freshening Event for 120 years in the Subpolar North Atlantic (EGU2019-15747)

Susan Lozier, Laifang Li, and Feili Li, The North Atlantic “Cold Blob”: an Alternate Explanation (EGU2019-3412)

Astrid Pacini, Robert Pickart, Frank Bahr, Andree Ramsey, Daniel Torres, and Johannes Karstensen, Structure and variability of the West Greenland boundary current system (EGU2019-1283)

Patricia Zunino, Herlé Mercier, and Virginie Thierry, Preconditioning favored deep convection in the Irminger Sea in winters 2016, 2017 and 2018 (EGU2019-16644)

Poster Presentations

Heather Furey, Amy Bower, and Andree Ramsey, Variability of the Deep Bight: Two-years of Mooring Data in the Bight Fracture Zone (EGU2019-17282)

Loic Houpert, Stuart Cunningham, Clare Johnson, Neil Fraser, Stefan Gary, Mark Inall, and Penny Holliday, Transport variability in the Eastern Subpolar North Atlantic Based on Mooring Measurements (EGU2019-17215)

Greg Koman, Adam Houk, M. Femke de Jong, and William Johns, Transport and variability of the East Reykjanes Ridge Current (EGU2019-10169)

Isabela Le Bras, Fiamma Straneo, James Holte, and Penny Holliday, Convection and deep water export in the Irminger Sea (EGU2019-9701)

Feili Li and Susan Lozier and the OSNAP Observations Team, Volume, heat and freshwater transports across the OSNAP array (EGU2019-3403

Tillys Petit, Herle Mercier, and Virginie Thierry, Formation and evolution of the East Reykjanes Ridge Current and Irminger Current (EGU2019-14022)

Robert Pickart, Michael Spall, Peigen Lin, Dana Mastropole, Hedinn Valdimarsson, Thomas Haine, Mattia Almansi, and Wilken von Appen, Dynamics of the high-frequency variability in Denmark Strait (EGU2019-400) X4.29

Sijia Zou, M. Susan Lozier, Feili Li, and Laura Jackson, Density-compensated Overturning Circulation in the Labrador Sea (EGU2019-3386) X4.34

 


AGU 2018

December 10-14, 2018 in Washington, D.C.
Meeting Website

Talks

Susan Lozier, New Observations of the Modern AMOC and Their Relevance to Reconstructions of the Past AMOC (PP14A-02)

Susan Lozier, Laifang Li, Feili Li, and Sijia Zou. A closer look at AMOC and its role in North Atlantic Climate Variability (Invited) (A54C-01)

Poster Presentations

Isabela Le Bras, Nicholas Beaird, and Fiammetta Straneo. Freshwater budgets for the ocean east of Greenland (C21C-0374)


EGU 2018

April 8-13, 2018 in Vienna, Austria
Meeting Website

Talks

Stuart Cunningham, Loïc Houpert, Clare Johnson, Neil Fraser, Stefan Gary, Mark Inall, and Penny Holliday
Circulation in the Eastern Subpolar North Atlantic Based on Three Years of Mooring Measurements (EGU2018-14519)

Susan Lozier and Feili Li and the OSNAP Observations Team
First Results from OSNAP: Overturning in the Subpolar North Atlantic Program (EGU2018-10132)


Ocean Sciences Meeting 2018

February 11-16, 2018 in Portland, OR
Meeting Website

Talks

Martha W Buckley, Laifang Li, M Susan Lozier and Nicholas Foukal
Can variations in mixed layer depth explain variations in SST decorrelation timescales in the North Atlantic and North Pacific? (PL23A-05)

Femke de Jong, Laura de Steur and Koen van der Laan
Transports Through the OSNAP Irminger Current Array (PL21A-07)

Femke de Jong, Marilena Oltmanns, Johannes Karstensen and Laura de Steur.
Observing deep convection in the Irminger Sea with a dense mooring array

Cristian Florindo-Lopez,Naomi P Holliday,Sheldon Bacon, Yevgeny Aksenov and Eugene Colbourne
Observational Evidence of Multi-Decadal Changes in Arctic Freshwater Transport to the Subpolar North Atlantic (HE21A-01) 

Naomi P Holliday, Brian A. King, Stefan Gary, Stuart A. Cunningham, Johannes Karstensen, Elaine McDonagh, Sheldon Bacon, Feili Li and King Brian
Subpolar North Atlantic overturning and gyre circulation and heat and freshwater fluxes from two OSNAP high resolution hydrographic sections in the summers of 2014 and 2016 (PL21A-04)

William E Johns, Adam Houk, Greg Koman, Amy S Bower, Sijia Zou and Susan Lozier
Transport of the Iceland-Scotland Overflow plume along the eastern flank of the Reykjanes Ridge (PL21A-05)

Isabela Le Bras, James Holte, Naomi P Holliday and Fiammetta Straneo
Seasonality of Freshwater in the East Greenland Current System (PL21A-08)

Feili Li, M Susan Lozier, Gokhan Danabasoglu, Naomi P Holliday, Young-Oh Kwon, Anastasia Romanou, Stephen G Yeager, and Rong Zhang
Local and Downstream Relationships Between the Volume of Newly Formed Labrador Sea Water and Overturning Circulation in the North Atlantic(PL31A-04)

Yi Liu, Chris Wilson, Melissa A. Green and Christopher W. Hughes.
Gulf Stream transport and mixing processes via Lagrangian coherent structure dynamics (PS33A-05) 

M Susan Lozier
First Results from OSNAP: Overturning in the Subpolar North Atlantic Program(PL21A-03) 

Ben I Moat, Bablu Sinha, Simon A Josey, Jon Robson, Pablo Ortega, Naomi P Holliday, Gerard D McCarthy and Joel Hirschi
Relationship between changes in the AMOC, North Atlantic heat content and SST (PL23A-06)

Anastasia Romanou, M Susan Lozier, Feili Li, Kayla Rosann Flynn, Maria Aristizabal-Vargas and Joy Romanski
Labrador Sea Water formation and its relationship to buoyancy forcing (PL14A-1754)

Neill Sutherland Mackay, Chris Wilson, Jan D. Zika, Naomi P. Holliday
Estimating Advective and Diffusive Fluxes of Heat and Freshwater in the Arctic Using a Novel Inverse Method in Thermohaline Coordinates (PL23A-08)

Jian Zhao, Amy Bower, Jiayan Yang, Xiaopei Lin, and Chun Zhou
Mesoscale eddies modulate meridional heat flux variability in  the subpolar North Atlantic

Poster Presentations

Amy S Bower, Heather Furey, Sijia Zou and Susan Lozier
Overflow Water Pathways in the Subpolar North Atlantic Observed with Deep Floats (PL24A-1786)

Nicholas Foukal and M. Susan Lozier
Connecting Variability in Lagrangian Inter-gyre Throughput from the Subtropical to the Subpolar Gyres with the Meridional Heat Transport in the North Atlantic (PL34A-1815)

Loic Houpert, Mark Inall, Estelle Dumont, Stefan Gary, Clare Johnson, Marie Porter, William E Johns and Stuart A Cunningham
Transport and energetic small structure of the Eastern North Atlantic gyre from observations (PL24A-1788)

Clare Johnson, Stuart A Cunningham, Loic Houpert, Christopher O’Donnell, Stefan Gary, Mark Inall and Naomi P Holliday
Circulation in the Eastern Subpolar North Atlantic Based on Three Years of Mooring Measurements (PL21A-06)

Yavor Kostov, David Marshall and Helen Johnson
Sensitivity of the Subtropical AMOC to Variability in the Subpolar North Atlantic (PL24A-1791)

Laifang Li and M. Susan Lozier
Mechanisms driving interannual variability in subtropical mixed layer depths (PC24B-0602)

Ryan James Peabody and Susan Lozier
The maintenance of high productivity in the absence of Ekman upwelling: The supply of nutrients to the North Atlantic intergyre region (EP24A-0762)

Tillys Petit, Herle Mercier and Virginie Thierry
Circulation in the vicinity of the Reykjanes Ridge in June-July 2015 (PL24A-1774)

Xiaobiao Xu, Amy S Bower, and Heather H Furey
Transport variability of the Iceland-Scotland overflow water through the Charlie-Gibbs Fracture Zone: results from an eddying simulation and observations (HE24C-2886)

Sijia Zou, M Susan Lozier, and Martha W Buckley
Exploring the relationship between deep water mass transport variability and the Atlantic Meridional Overturning Circulation (PL34A-1820)


APSO Symposium

August 17-September 1, 2017 in Cape Town, South Africa
Meeting Website
Talk by Stuart Cunningham: “Recent Advances in MOC observations in the North Atlantic”


EGU 2017

April 23-28, 2017 in Vienna, Austria
Meeting Website

Talks

Amy Bower, Heather Furey, and Susan Lozier
Overflow Water Pathways in the Subpolar North Atlantic Observed with Deep Floats
EGU2017-8103
View Abstract

Loïc Houpert, Mark Inall, Estelle Dumont, Stefan Gary, Marie Porter, William Johns, and Stuart Cunningham
Transport Structure and Energetic of the North Atlantic Current in Subpolar Gyre from Observations
EGU2017-5593
View Abstract

William Johns, Adam Houk, Greg Koman, Sijia Zou, and Susan Lozier
Transport of Iceland-Scotland Overflow waters in the Deep Western buy valium online Boundary Current along the Reykjanes Ridge
EGU2017-9415
View Abstract

Susan Lozier
OSNAP Update: Measuring the AMOC in the subpolar North Atlantic
EGU2017-10341
View Abstract

Robert Pickart, Wilken von Appen, Dana Mastropole, Hedinn Valdimarsson, Kjetil Vage, Steingriumur Jonsson, Kerstin Jochumsen, and James Girton
On the Nature of the Mesoscale Variability in Denmark Strait
EGU2017-5372
View Abstract

Chris Wilson, Yi Liu, Melissa Green, and Chris Hughes
Gulf Stream transport and mixing processes via coherent structure dynamics
EGU2017-10345
View Abstract

Jian Zhao, Amy Bower, Jiayan Yang, Xiaopei Lin, and Chun Zhou
Mesoscale eddies control meridional heat flux variability in the subpolar North Atlantic
EGU2017-17050
View Abstract

Sijia Zou, Susan Lozier, Walter Zenk, Amy Bower, and William Johns
Observed and Modeled Pathways of the Iceland Scotland Overflow Water in the eastern North Atlantic
EGU2017-9794
View Abstract

Poster Presentations

Femke de Jong, Laura de Steur, Stelios Kritsotalakis
Volume, heat and freshwater transport in the Irminger Current
EGU2017-9635
View Abstract

Nick Foukal and Susan Lozier
Assessing variability in the size and strength of the North Atlantic subpolar gyre
EGU2017-10141
View Abstract

Greg Koman, Adam Houk, Cobi Christiansen, and Bill Johns
Transport and seasonal variability of the East Reykjanes Ridge Current
EGU2017-8490
View Abstract

Feili Li and Susan Lozier
On the Linkage between Labrador Sea Water Volume and Overturning Circulation in the Labrador Sea
EGU2017-9776
View Abstract

Neill Mackay, Chris Wilson, and Jan Zika
Application of a Regional Thermohaline Inverse Method to observational reanalyses in an Arctic domain
EGU2017-17329
View Abstract

Ryan Peabody and Susan Lozier
The AMOC as a mechanism for nutrient supply to the Eastern North Atlantic
EGU2017-17315
View Abstract

Anne Piron, Virginie Thierry, Herlé Mercier, and Guy Caniaux
Gyre scale deep convection in the subpolar North Atlantic Ocean during winter 2014-2015
EGU2017-10183
View Abstract

Petit Tillys, Mercier Herle, and Thierry Virginie
Circulation in the region of the Reykjanes Ridge in June-July 2015
EGU2017-13328
View Abstract


AGU 2016

December 12-16, 2016 in San Francisco, California
Meeting Website

Lozier, Brown, Zhang and Li
A14F-01
The necessity of cloud feedback for a basin-scale Atlantic Multidecadal Oscillation (Invited)

The Atlantic Multidecadal Oscillation (AMO), characterized by basin-scale multidecadal variability in North Atlantic sea surface temperatures (SSTs), has traditionally been interpreted as the surface signature of variability in oceanic heat convergence (OHC) associated with the Atlantic Meridional Overturning Circulation (AMOC). This view has been challenged by recent studies which show that AMOC variability is not simultaneously meridionally coherent over the North Atlantic and that AMOC-induced low frequency variability of OHC is weak in the tropical North Atlantic. Here we present modeling evidence that the AMO-related SST variability over the extratropical North Atlantic results directly from anomalous OHC associated with the AMOC, but that the emergence of the coherent multidecadal SST variability over the tropical North Atlantic requires cloud feedback. Our study identifies atmospheric processes as a necessary component for the existence of a basin-scale AMO, thus amending the canonical view that the AMOC-AMO connection is solely attributable to oceanic processes. The implications of our work for the AMOC-AMO relationship on other time scales will be discussed, as will observational efforts focused on studying AMOC coherence.


EGU 2016

Laura de Steur and Femke de Jong
EGU2016-9380
Variability in the Irminger Sea: new results from continuous ocean measurements between 2014-2015

The Irminger Current along the Reykjanes Ridge transports warm and saline Atlantic Water northward in the subpolar gyre and hence forms an important contribution to the upper warm limb of the AMOC. Volume and heat transport estimates have up to present principally been based on summer hydrographic data combined with satellite surface velocities. Here we present the first year-round volume and heat transports based on the full-depth mooring array on the western flank of the Reykjanes Ridge between 2014 and 2015. These estimates are compared with results based on shipboard data from the early 1990s and 2000s when two different modes of transport variability were observed through the appearance of a second deep core of the Irminger Current. The recently obtained continuous measurements show a distinct change in the shape and strength of the Irminger Current during the one-year deployment period. This change occurred during the winter of 2014-2015 concomitantly with record deep convection observed in the central Irminger Gyre. The convection, observed by a moored CTD-profiler, was associated with very strong sustained surface buoyancy forcing, leading to mixed layer depths of 1200 m. This
oxygen-rich, recently ventilated water was observed basin wide in the Irminger Sea in 2015 and contrasted the stratified situation seen in 2014. The Irminger Current and the Irminger basin hydrography are reminiscent of the conditions that were seen in the early 1990s.

Helen Pillar, Patrick Heimbach, Helen Johnson and David Marshall
EGU2016-13947
Dynamical Attribution of Recent Variability in Atlantic Overturning

Attributing observed variability of the Atlantic Meridional Overturning Circulation (AMOC) to past changes in surface forcing is challenging but essential for detecting any influence of anthropogenic forcing and reducing uncertainty in future climate predictions. Here we obtain quantitative estimates of wind and buoyancy-driven AMOC variations at 25N by projecting observed atmospheric anomalies onto model-based dynamical patterns
of AMOC sensitivity to surface wind, thermal and freshwater forcing over the preceding 15 years. We show that local wind forcing dominates AMOC variability on short timescales, whereas subpolar heat fluxes dominate on decadal timescales. The reconstructed transport time series successfully reproduces most of the interannual variability observed by the RAPID-MOCHA array. However, the apparent decadal trend in the RAPID-MOCHA time
series is not captured, requiring improved model representation of ocean adjustment to subpolar heat fluxes over at least the past two decades, and highlighting the importance of sustained monitoring of the high latitude North Atlantic.


Ocean Sciences 2016

New Orleans, LA
Talks

Stuart Cunningham et al
O43A-05: The Subpolar AMOC: Dynamic Response of the Horizontal and Overturning Circulations due to Ocean Heat Content Changes between 1990 and 2014

Ocean heat content (OHC) in the subpolar region of the North Atlantic varies on interannual to decadal timescales and with spatial variations between its sub-basins as large as the temporal variability. In 2014 the Overturning in the Subpolar North Atlantic Programme (OSNAP) installed a mooring array across the Labrador Sea and from Greenland to Scotland. The objective of the array is to measure volume, heat and fresh-water fluxes. By combining Argo and altimeter data for the period 1990 to 2014 we describe and quantify the anomalous horizontal and overturning circulations and fluxes of heat and fresh-water driven by the long-term OHC changes. We thus provide a longer-term context for the new observations being made as part of OSNAP. Changes to the horizontal circulation involve deceleration of the gyre rim currents, lateral shifts of major open ocean current features and increased exchanges in the eastern intergyre region. These changes impact the Atlantic Meridional Overturning Circulation (AMOC) in density space causing a rich vertical anomalous structure. The net impact over this 24 year period is a reduction in northward heat-flux and decrease in southward fresh-water flux.

Patricia Handmann et al
PO41A-07 North Atlantic Deep Western Boundary Current Dynamics as Simulated by the VIKING20 Model Compared with Labrador Sea Observations

The connection of dynamic and hydrographic properties simulated by the VIKING20 model driven by CORE2 atmospheric forcing will be presented and compared to more than decade-long observations at the exit of the Labrador Sea near 53°N. VIKING20 is a high resolution (1/20°) nest, implemented by two-way nesting in a global configuration of the NEMO-LIM2 ocean-sea ice model in the North Atlantic (ORCA25). The exit of the Labrador Sea is the place where water masses from different origins and pathways meet and which are collectively called North Atlantic Deep Water (NADW). The VIKING20 flow field on average reproduces the observed structure as well as the bottom intensification of the western boundary current at 53°N. Here, we investigate the properties of the observed and modeled deep western boundary current by comparing North Atlantic water masses and currents simulated by the high resolution model with moored and hydrographic data from almost 20 year-long observations at 53°N. As comparable density fields in the model in comparison to the observations are found at shallower depths, we will present an evaluation of dynamic and hydrographic changes connected to each other and to atmospheric forcing in the model and observed data. In addition the following key questions will be addressed: How is energy distributed in baroclinic and barotropic components in observations and model in comparison to each other? The seasonal cycle can be found in the shallow Labrador Current in the model and the observations, but how deep is it reaching and causing dynamic and hydrographic changes?

Helen Johnson
PO41A-04 Dynamical Attribution of Recent Variability in Atlantic Overturning

Attributing observed variability of the Atlantic Meridional Overturning Circulation (AMOC) to past changes in surface forcing is challenging but essential for detecting any influence of anthropogenic forcing and reducing uncertainty in future climate predictions. Here we obtain quantitative estimates of wind and buoyancy-driven AMOC variations at 25?N by projecting observed atmospheric anomalies onto model-based dynamical patterns of AMOC sensitivity to surface wind, thermal and freshwater forcing over the preceding 15 years. We show that local wind forcing dominates AMOC variability on short timescales, whereas subpolar heat fluxes dominate on decadal timescales. The reconstructed transport time series successfully reproduces most of the interannual variability observed by the RAPID-MOCHA array. However, the apparent decadal trend in the RAPID-MOCHA time series is not captured, requiring improved model representation of ocean adjustment to subpolar heat fluxes over at least the past two decades, and highlighting the importance of sustained monitoring of the high latitude North Atlantic.

Johannes Karstensen et al
PO53A-05: Observations and causes of hydrographic variability in den deep western boundary current at the exit of the Labrador Sea.

The hydrographic variability of the Deep Western Boundary Current (DWBC) in the Labrador Sea is discussed using observational data from the period 1997 to 2014. This variability of the DWBC occurs on time scales from a few days to multiannual. The hydrographic data is analyzed in terms of signals originating from different “behavioral modes” of the DWBC, including the re-positioning of the core along the sloping topography, the pulsing of the core, and the advection of watermass anomalies within the core. Cross-correlation spectra show that the hydrographic variability on time scales of a few days can be explained by the periodic re-location of the core due to topographic waves. Variability on longer time scales can be interpreted by long-term re-location of the core, potentially related to an adjustment of the core to circulation changes on gyre scale. However, along-flow advection of anomalies is likely another source for this long-term variability. Possible scenarios for the generation of hydrographic variability in the source regions of the DWBC are discussed.

Susan Lozier
Plenary lecture
A Decade after The Day After Tomorrow: Our Current Understanding of the Ocean’s Overturning Circulation

In 1800 Count Rumford ascertained the ocean’s meridional overturning circulation from a single profile of ocean temperature constructed with the use of a rope, a wooden bucket and a rudimentary thermometer. Over two centuries later, data from floats, gliders and moorings deployed across the North Atlantic has transformed our understanding of the temporal and spatial variability of the meridional overturning: the component of the climate system responsible for sequestering heat and anthropogenic carbon dioxide in the deep ocean. In this talk I will review our current understanding of the overturning circulation with a particular focus on what we currently do and don’t understand about the mechanisms controlling its temporal change.

Neill Mackay
PO13E-06: Circulation and mixing in the subpolar North Atlantic diagnosed from climatology using a Regional Thermohaline Inverse Method (RTHIM)

The Overturning in the Subpolar North Atlantic Program (OSNAP) aims to quantify the subpolar Atlantic Meridional Overturning Circulation (AMOC), including associated advective and diffusive transport of heat and freshwater. The OSNAP observational array will provide a continuous subpolar record of the AMOC from Labrador-Greenland-Scotland during 2014-2018. To understand the significance of high- and low- frequency changes measured by the array, including changes to AMOC metrics, water mass transformation and transports, Argo observations provide a useful complementary constraint for an inverse method, with the aim of resolving intra-seasonal timescales.

A novel inverse method in thermohaline coordinates has recently been demonstrated as being able to diagnose aspects of the global overturning circulation and mixing from model data. Here we have further developed a Regional Thermohaline Inverse Method, (RTHIM) and have validated it with the NEMO model in the OSNAP region, before applying it to a seasonal Argo climatology.

In an ocean basin there exists a balance between surface heat and freshwater fluxes, advective fluxes at an open boundary and interior diffusive mixing. RTHIM makes use of this balance to determine unknown velocities at the open boundary and diffusive fluxes of heat and salt within the domain volume. We identify key transport and mixing regions and events, relevant to the subpolar AMOC, and discuss the robustness of the inverse solutions. RTHIM is also able to identify the particular contributions to AMOC volume transport changes from temperature and salinity components.

Ric Williams
PC41A-01 Climate sensitivity to ocean sequestration of heat and carbon.

Ocean ventilation is a crucial process leading to heat and anthropogenic carbon being sequestered from the atmosphere. The rate by which the global ocean sequesters heat and carbon has a profound effect on the transient global warming. This climate response is empirically defined in terms of a climate index, the transient climate response to emissions (TCRE). Here, we provide a theoretical framework to understand how the TCRE can be interpreted in terms of a product of three differential terms: the dependence of surface warming on radiative forcing, the fractional radiative forcing contribution from atmospheric CO2 and the dependence of radiative forcing from atmospheric CO2 on cumulative carbon emissions. This framework is used to diagnose two models, an Earth System Model of Intermediate Complexity, configured as an idealised coupled atmosphere and ocean, and an IPCC-class Earth System Model. In both models, the centennial trends in the TCRE are controlled by the response of the ocean, which acts to sequester both heat and carbon; there is a decrease in the dependence of radiative forcing from CO2 on carbon emissions, which is partly compensated by an increase in the dependence of surface warming on radiative forcing. On decadal timescales, there are larger changes in the TCRE due to changes in ocean heat uptake and changes in non-CO2 radiative forcing linked to other greenhouse gases and aerosols. Our framework may be used to interpret the response of different climate models and used to provide traceability between simple and complex climate models.

Poster Presentations

Amy Bower
PO54A-3225: The Charlie-Gibbs Fracture Zone: A Crossroads of the Atlantic Meridional Overturning Circulation

The Charlie-Gibbs Fracture Zone (CGFZ), a deep gap in the Mid-Atlantic Ridge at ~52N, is the primary conduit for westward-flowing Iceland-Scotland Overflow Water (ISOW), which merges with Denmark Strait Overflow Water to form the Deep Western Boundary Current. The CGFZ has also been shown to “funnel” the path of the northern branch of the eastward-flowing North Atlantic Current (NAC), thereby bringing these two branches of the AMOC into close proximity. A recent two-year time series of hydrographic properties and currents from eight tall moorings across the CGFZ offers the first opportunity to investigate the NAC as a source of variability for ISOW transport. The two-year mean and standard deviation of ISOW transport was -1.7 ± 1.5 Sv, compared to -2.4 ± 3.0 Sv reported by Saunders for a 13-month period in 1988-1989. Differences in the two estimates are partly explained by limitations of the Saunders array, but more importantly reflect the strong low-frequency variability in ISOW transport through CGFZ (which includes complete reversals). Both the observations and output from a multi-decadal simulation of the North Atlantic using the Hybrid Coordinate Ocean Model (HYCOM) forced with interannually varying wind and buoyancy fields indicate a strong positive correlation between ISOW transport and the strength of the NAC through the CGFZ (stronger eastward NAC related to weaker westward ISOW transport). Vertical structure of the low-frequency current variability and water mass structure in the CGFZ will also be discussed. The results have implications regarding the interaction of the upper and lower limbs of the AMOC, and downstream propagation of ISOW transport variability in the Deep Western Boundary Current.

Femke de Jong & Laura de Steur
PO54B-3241: Record deep convection in the Irminger Sea: Observations from the LOCO mooring during winter 2014-2015.

Anomalously strong cooling over the Irminger Sea during the winter of 2014-2015 caused record depths convective mixing. Active mixed layer depths at the LOCO mooring site, near the center of the Irminger Gyre, reached down to 1200 m. A further reduction of stratification suggests mixed layers down to 1500 m. The deep mixing eroded the intermediate salinity minimum associated with Labrador Sea Water and replaced it with a cold, fresh homogeneous layer rich in oxygen. This layer was seen to extend across the basin in the hydrographic section of summer 2015, suggesting that a significant part of the basin participated in the mixing. The winter 2014-2015 convective event exceeded the previous maximum of 1000 m in the winter of 2007-2008. The main cause is the surface buoyancy forcing. Strong surface buoyancy loss (monthly mean > 125 W/m2) lasted for an additional month. The 2015 hydrography is reminiscent of the situation in the 1990s when a large volume of homogeneous water filled the Irminger basin.

Laura de Steur & Femke de Jong
PO54B-3242: Transport variability of the Irminger Current: First year-round results from a mooring array on the Reykjanes Ridge.

The Irminger Current on the Reykjanes Ridge transports warm and saline Atlantic Water northward in the subpolar gyre and hence forms an important component of the upper warm limb of the AMOC. Volume and heat transports have – up to now – principally been based on analysis of summer hydrographic data combined with satellite surface velocities. Here we present the first year-round volume and heat transport estimates based on the full-depth mooring array on the western flank of the Reykjanes Ridge between 2014 and 2015. These estimates are compared with results based on shipboard data from the early 1990s and the early 2000s when two contrasting modes of transport variability were seen through the appearance of a second deep core of the Irminger Current. The results of the newly obtained continuous measurements initially show two clear bottom intensified cores in the flow field. However, during the deployment period the Irminger Current showed increased variability in shape and strength during the winter 2014-2015. This change happened in concert with a return from a highly stratified Irminger basin in 2014 to a basin that was filled with cold and fresh LSW-like water in 2015. All in all the situation in 2015 was very reminiscent of the conditions that were seen in the early 1990s in the Irminger basin. These results are further explored in light of atmospheric circulation, a strong positive NAO and the strong winter of 2014-2015 causing record deep convection in the central Irminger Gyre.

Nicholas Foukal and Susan Lozier
PO54A-3229: Variability in Lagrangian-derived througput from the subtropical to the subpolar gyres in the North Atlantic and its impact on inter-gyre heat transport.

Variability in the strength of the inter-gyre throughput of water from the subtropical to the subpolar gyres in the North Atlantic as part of the upper limb of the Atlantic Meridional Overturning Circulation has been hypothesized to control the variability in the inter-gyre heat transport. Here, we first quantify the variability in the inter-gyre throughput by tracking backwards-run Lagrangian trajectories in a high-resolution ocean circulation model and secondly determine the controlling mechanisms of this variability by analyzing the strength and spatial extent of the subtropical and subpolar gyres as measured by satellite altimetry. Backwards-run Lagrangian trajectories provide an accurate measure of the origin of water masses without the subjective designations of water mass classes and assumptions on the mixing along pathways. Similarly, by explicitly tracking the strength (sea-surface height of gyre center – sea-surface height of gyre boundary) and spatial extent (area enclosed by the largest closed sea-surface height contour), no assumptions are necessary on the role of statistical modes that change through time. Results from these analyses will be discussed as they pertain to the observed warming of the subpolar gyre during the past two decades.

Penny Holliday
PO54A-3222: The AMOC and subpolar gyre circulation at the OSNAP section in summer 2014.

The overturning and gyre circulation in the subpolar North Atlantic is being measured by the international observing array deployed by OSNAP (Overturning in the Subpolar North Atlantic Programme, www.o-snap.org). The OSNAP line crosses the Labrador Sea from 52N to the southern end of Greenland, and lies across the Irminger Sea, Iceland Basin and Rockall Trough at approximately 60-57°N. The array, deployed 2014-2018, uses moored instruments, gliders and floats to measure the surface to seafloor circulation. OSNAP is novel and exciting because it is making the first ever continuous measurements of the Atlantic Meridional Overturning Circulation in the subpolar region. In time, OSNAP will generate products analogous to the RAPID time series at 26N.

In this study we use a high resolution CTD/LADCP OSNAP section from summer 2014 to provide a synoptic view of the circulation, heat and freshwater fluxes at the time that the array was deployed. The data represent the first time that the entire subpolar region including the Labrador Sea has been measured in a single cruise (GO-SHIP section AR07, cruise JR302). We will present estimates of both the horizontal and overturning circulation, and the latter will be examined both in pressure and in density co-ordinates. We will show volume, heat and freshwater transports for the whole section and key components, including the deep boundary currents and shallow shelf currents containing freshwater exported from the Arctic.

Loïc Houpert
PO54B-3234: Glider Observations of the Properties, Circulation and Formation of Water Masses on the Rockall Plateau in the North Atlantic.

The Overturning in Subpolar North Atlantic Program (OSNAP) is an international collaboration with the overarching goal of measuring the full-depth mass fluxes associated with the AMOC (Atlantic Meridional Overturning Circulation), as well as meridional heat and fresh-water fluxes. Through the deployment of moorings and gliders, UK-OSNAP is part of this international partnership to maintain a transoceanic observing system in the subpolar north Atlantic (the OSNAP array).

We present here the first year and a half of UK-OSNAP glider missions on the Rockall Plateau in the North Atlantic, along the section located at 58°N, between 22°W and 15°W. Between July 2014 and September 2015, 10 gliders sections were realized on the Rockall Plateau. The depth-averaged current estimated from gliders shows very strong values (up to 45cm.s-1) associated with meso-scale variability due particularly to eddies and water mass formation. Glider data also reveal a deep mixed layer in February/March 2015 up to 600m associated with the formation of the 27.3?? and 27.4?? Subpolar Mode Waters.

The variability of the meridional transport of heat, salt and mass on the Rockall Plateau are also discussed. Relative and absolute geostrophic transports are calculated from the glider data and from the combination of the glider data and the data from mooring M4 located in the Iceland Basin (58°N, 21°W).

Marilena Oltmanns et al
HE14B-1415: The Role of Local and Regional Atmospheric Forcing for Convection in the Subpolar North Atlantic

Variabilities in upper ocean hydrography in the subpolar North Atlantic and Nordic Seas can have large implications for deep water formation, often seen as the downward branch of the Atlantic meridional overturning circulation. These variabilities encompass a wide range of spatial and temporal scales and their causes may vary between different years and basins. Specific causes on short time scales of the order of days include local air-sea heat fluxes during intense wind events and transient eddies. Freshwater fluxes associated with discharges from land and sea ice and vertical transports related to the regional wind stress curl can cause variations in stratification on time scales of the order of weeks to months. On even longer time scales, changes in ocean currents, subsurface water mass anomalies and large-scale climate variability may alter the upper ocean hydrography.

In this presentation, we focus on relatively short time scales of the order of days up to several weeks. First, we will characterize the atmospheric forcing on these time scales over the convection centers in the subpolar North Atlantic with a reanalysis product, remote sensing data and observations from nearby weather stations. Using observations from moored instruments in the subpolar North Atlantic, we will then trace the spectral characteristics of the local heat and freshwater fluxes, as well as of the regional momentum fluxes, in salinity and temperature variabilities in the upper ocean. Finally, we will explore the coherence among the different fluxes, relate them to specific forcing mechanisms, such as cyclones, polar lows and blocking anti-cyclones, and evaluate their contribution to convection.

Virginie Thierry
PO54B-3239: Argo float observations of basin-scale deep convection in the Irminger Sea during winter 2011-2012.

An analysis of Argo data during the 2011-2012 winter revealed the presence of an exceptionally large number of profiles over the Irminger Basin with mixed layer depths (MLD) exceeding 700 m, which was deep enough to reach the pool of the intermediate Labrador Sea Water located in the Irminger Sea. Among them, 4 profiles exhibited an MLD of 1000 m, which was the maximum value observed this winter. Owing to the exceptional Argo sampling in the Irminger Sea during that winter the different phases of the mixed layer deepening down to 1000 m and their spatial extents were observed for the first time in the Irminger Sea. Two intense convective periods occurred in late January south of Cape Farewell and in late February-early March east of Greenland. A final deepening period was observed in mid-March during which the deepest mixed layers were observed. This long deepening period occurred in large regional areas and was followed by a rapid restratification phase. A mixed layer heat budget along the trajectories of the 4 floats that sampled the deepest mixed layers showed that heat loss at the air-sea interface was mainly responsible for heat content variations in the mixed layer. Greenland Tip Jets were of primary importance for the development of deep convection in the Irminger Sea in the 2011-2012 winter. They enhanced the winter heat loss and two long (more than 24 hours), intense and close in time late events boosted the mixed layer deepening down to 1000m. Net air-sea fluxes, the number of Greenland Tip Jets, the stratification of the water column, the NAO index and Ekman-induced heat flux are pertinent indicators to assess the favorable conditions for the development of deep convection in the Irminger Sea. When considering each of those indicators, we concluded that the 2011-2012 event was not significantly different compared to the three other documented occurrences of deep convection in the Irminger Sea.This work is a contribution to the NAOS project.

Ric Williams
PO44A-3130: Gyre-specific Ocean Heat Content Changes Controlled by the Meridional Overturning in the North Atlantic

In the North Atlantic, there are pronounced gyre-scale changes in ocean heat content on interannual to decadal time scales. This climate variability is investigated using a semi-diagnostic dynamical analysis of historical temperature and salinity data from 1962 to 2011 together with idealised isopycnic model experiments. On timescales of typically five years, the tendencies in upper ocean heat content are not simply explained by the area-averaged atmospheric forcing for each gyre, but instead dominated by heat convergences associated with the meridional overturning circulation (MOC). In the subtropics, the most pronounced warming events are associated with an increased influx of tropical heat driven by stronger Trade winds. In the subpolar gyre, the warming and cooling events are associated with changes in western boundary density, where increasing boundary density in the Labrador Sea leads to an enhanced overturning and an influx of subtropical heat. The different effects of the meridional overturning are a consequence of how the poleward heat transport is achieved in a different manner over the basin: the heat carried mainly by the MOC over the upper 100m at low latitudes and instead by the MOC from 100m to 1300m at mid and high latitudes, augmented by the gyre transport at high latitudes. In summary, upper ocean heat content anomalies are formed in a different manner in the subtropical and subpolar gyres, with different components of the meridional overturning circulation probably excited by the local imprint of atmospheric forcing.

Chris Wilson 
PO24B-2949: An Update to the ‘Barrier or Blender’ Model of the Gulf Stream, Based on Lagrangian Analysis of Aviso Altimetry.

Finite-time Lyapunov exponent (FTLE) is calculated from 22 years of Aviso geostrophic velocity to identify Lagrangian coherent structure (LCS) in the Gulf Stream region. The coherent structures in and around the Gulf Stream are delineated by the both positive- and negative-time FTLE ridges, and represent boundaries between dynamically distinct regions with characteristic transport and mixing processes. Alternating positive- and negative-time FTLE ridge patterns are found to line the meandering jet, which indicate the regions of entrainment and detrainment along the jet.

This LCS pattern compares well with the Bower kinematic model of a meandering jet, although it is clear that the kinematic model is an over-simplification of the jet dynamics, and studying the dynamics of vortex interaction with the jet is important for more fully understanding fluid transfer in the Gulf Stream region. A new conceptual model for the Gulf Stream is proposed, including a mechanism for the generation of the observed region of largest mean mixing efficiency. There is large variability in mixing efficiency in the ‘wavemaker’ region, where standing Rossby waves are important.

Chun Zhou
PO44A-3118: Subpolar North Atlantic glider observations for OSNAP

OSNAP is an international program designed to provide a continuous record of the full-water-column, trans-basin fluxes of heat, mass, and freshwater in the subpolar North Atlantic. The observational efforts of this program are focused largely along lines connecting Labrador to Greenland, and Greenland to Scotland. The OSNAP experimental plan includes continuous sampling by Slocum G2 gliders along the latter (easternmost) of these two sections, specifically across the northeastward-flowing North Atlantic Current in the Iceland Basin. The glider observations, a collaboration between the Ocean University of China and Woods Hole Oceanographic Institution, provide higher spatial resolution of water properties than is possible from moorings alone. These observations commenced in June 2015 with a mission to fly back and forth along a section between two OSNAP moorings, profiling from the surface to 1000-m depth. As of September 2015, five sections (including over 240 profiles) have been recorded. As expected, the data indicates energetic intraseasonal variability at smaller scales than can be captured by the OSNAP mooring array. We are investigating how this variability may impact calculated fluxes of heat, mass, and freshwater. The glider repeatedly crossed a cyclonic eddy between the two moorings, enabling study of fine thermohaline structure during the development and dissipation of mesoscale eddies in the subpolar North Atlantic. With additional sensors measuring fluorescence, dissolved oxygen, nitrate, and multispectral light, the dataset also has the potential to significantly advance our understanding of the biogeochemical processes of mesoscale and submesoscale eddies in the subpolar North Atlantic.

Sijia Zou
PO54A-3224: Contradictory Pathways between Labrador Sea Water Advection and Property Propagation.

Past observational studies have shown a strong relationship between Labrador Sea Water (LSW) property variability and property anomalies in the western subtropical gyre, with the former leading the latter by around 10 years. This time scale stands in contradiction to recent studies that have revealed a much longer advective time scale for LSW to enter the subtropical gyre. Using simulated floats from an ocean general circulation model, we show that LSW is not directly exported to the subtropical gyre, but rather recirculates within the subpolar gyre before it crosses the inter-gyre boundaries, primarily through interior pathways. The average age of LSW upon entering the subtropical basin is 22 (± 10) years. Once in the subtropical basin, LSW is advected from the central and eastern regions to the western region, where it joins the Deep Western Boundary Current with an average age of 30 (± 8) years. This spreading pattern of LSW trajectories differs markedly from the apparent pathway of LSW salinity anomalies: a cross correlation map of observational salinity anomalies in the Labrador Sea with those across the entire North Atlantic, reveals a direct and relatively fast propagation pathway along the western boundary, which takes 10-12 years to reach 30°N. Ongoing research to understand the mechanisms of LSW trajectory and property pathways will be discussed.